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Taxonomies are often available for machine learning data... Transi’[ivi’[y Bias
O v Box embeddings have transitivity bias!
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...but how do we make use of them?

Transitivity bias allows us to train on Lya(0; H) = Z £ (Eg(u, v)) + Z £~ (Eq(u,v))

Randomly sampling label pairs is inefficient. Can we leverage the structure? minimal distinguishing set of edges (u—v)EES (u—v)EEL
Question: What is the smallest subset of entries of the adjacency matrix necessary to uniquely determine a graph?
Experiments: F1 between Hierarchy and Model’s Predictions
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T @@ E = Ei(@ @) <7 Box embeddings can take advantage of Hierarchy-aware sampling converges
Algorithm 1 FINDMINDISTINGUISHER hierarchy-aware sampling faster on large taxonomies
Distinguishing Digraphs via Signed Digraphs  gequire: G = (V, E) transitively-closed DAG .
B B Conclusion
Q Transitive reduction of positive edges is sufficient : for (a—d) € Edo . : . . S .
for (a—b) € E do » Observing as few as 1% of the entries of the adjacency matrix uniquely identifies a hierarchy
E* + E*\ {(b—d)}

end for
for (c—d) € E do
E* + E*\ {(a—0c)}
end for
end for

OA 0*
Q D Q @ 10: return H* = (V, E*, E*) [1] Boratko et al. “Capacity and bias of learned geometric embeddings for directed graphs." NeurIPS 34 (2021)
[2] Patel et al. “Modeling label space interactions in multi-label classification using box embeddings” ICLR (2022)

* Box embeddings...
* have transitivity bias, allowing them to take advantage of the hierarchy-aware set
 converge faster with smaller, structurally-informed batches, to higher accuracy than vectors
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