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Introduction to AMR

- Sentence-level graph-based semantic representation

- Rooted, directed acyclic graph (DAG)
- Nodes: variables for entities, events, properties, states
- Edges: semantic roles & relations
- Leaves: instantiations of the node variables

- AMR parse accuracy evaluated by smatch (semantic match)

The boy wants the girl to believe him.
The boy is desirous of the girl believing him.



Approaches to AMR: graph, transition, seq2seq

AMR 1.0 AMR 2.0

Flanigan et. al. (2014)   Maximum spanning subgraph; Lyu et. al. 
(2018) graph prediction with latent alignment

58%; — —; 74.4%

Wang et. al. (2015)  Transition-based algorithm 63% —

Konstas et. al. (2017) sequence2sequence 62.1% —

Zhang et. al. (2019) Sequence-to-Graph Transduction 70.2% 76.3%

Cai & Lam (2020) Graph-Sequence Iterative Inference 75.4% 80.2%

Lee et. al. (2020) self-learning; Xu et. al. (2020) seq2seq pretraining 78.2%; — 81.3%; 81.4%



AMR Parsing Approaches
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This thesis



AMR Parsing via Graph↔Sequence Iterative Inference

- Series of graph expansion steps G0, … G1 … GN

- At each step a hypothesis/probe vector iterates between sentence encoding and 

current graph encoding to refine decision about graph expansion step



Zooming in on the Sentence Encoder
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Transformer



Our approach replaces Transformer encoder with GCN encoder to produce ``text memory”

● Transformer operates over sequential input, i.e. takes word sequence as input, and 

contextualizes every word on every other word in the sequence without exception

● GCN’s take a graph structure directly as input (in our case the dependency tree of a 

sentence), and passes information only between connected nodes in the graph

Differences between Transformer & GCN



Transformer

Every word queries every other word to obtain attention weights for each word in the sequence:

This is done for each attention head:

Treats the sentence like a complete graph



Graph Convolutional Networks (GCNs)

Input:



Why GCNs for AMR Parsing?

Syntax can inform semantic NLP tasks

GCNs have been shown to be effective for multiple NLP tasks:

❏ Semantic Role Labeling (SRL)  Marcheggiani & Titov (2017)
❏ Neural Machine Translation (NMT)  Bastings et. al. (2017)
❏ Event Detection Nguyen & Grishman (2018)

Correlation between dependency structure and argument structure for SRL



Hypothesis: GCNs for AMR Parsing

i) Similar to SRL and NMT, it’s intuitive that AMR Parsing can benefit from encoding 
syntactic graph structure because:

❏ AMR is fully graph based (more complex than SRL)
❏ Dependency syntax is intermediary step towards AMR (Wang et. al. 2015)

ii)  GCN encoder is more natural architecture than Transformer for AMR

❏ GCN passes information between two nodes connected by syntactic relation
❏ Transformer views sentence as complete graph, learns noisy connections



GCNs to encode Dependency Parses

Intuitions about which aspects of dependency tree can be encoded by which aspects of 

GCN architecture:



Dependency Trees Statistics

Accuracy of parsers

spaCy:  pretrained on OntoNotes corpus
Stanza: pretrained on ewt Universal Dependencies corpus

Proportion of nodes at depth for spaCy-preprocessed AMR3.0



Dependency Parses Statistics contd.

Proportion of sentences with #roots Expected #children at dependency tree depth



Dependency relation frequency for spaCy-preprocessed AMR 3.0



Graph Construction & “Probe” Aggregation Methods

❏ meta-root:  [BOS]
❏ sum:  w0 + … + w6
❏ root-sum: w1 + w5
❏ mean: (w0 + … + w6) / 7
❏ root-mean: (w1 + w5) / 2

“Fido eats the bone. Yum!”



Original Implementation: Baseline Transformer & BERT

Baseline

Use uncontextualized [BOS] embedding for probe

Use uncontextualized sentence embeddings for text memory

Remove positional encodings from Transformer input

Ablation studies with # layers and # attention heads



GCN Configurations

i) GCN Baseline: No Edge Labels

ii) GCN Direction: Direct Inverse Self-Loop

|dir| = 3

iii) GCN Label:  

|lab| = 2 × | relations | + 1



GCN Configurations contd.

iv) GCN Label Gating

v) GCN Label′ Gating distinct weights for most frequent dependency relations

scalar edge gate



probe aggregation methods for 1 
layer GCN label gating

GCN Results

stacking GCN layers

GCN configurations



Graph Attention Networks (GATs)



GAT Enhancements

Create distinct additive attention vectors depending on edge type

GAT Direction: Direct Inverse Self-Loop

|dir| = 3

GAT Label:

|lab| = 2 × | relations | + 1



GAT Results

stacking GAT layersGAT configurations



GCN with Transformer

❏ GCN layer over Transformer output

❏ Transformer layer over GCN output

❏ Concatenate GCN and Transformer outputs, 

project onto embedding dimension



Backing off to BiLSTM Encoder

Hidden size 256, BiLSTM output 512

Hidden size 512 (original), project BiLSTM output back onto 512

Effect of stacking GCN over BiLSTM



Parameter Count for Architectures

Graph encoders have an order of magnitude fewer parameters than sequence encoder configurations



Observations: Comparing with SRL, NMT, ED

● Common trends for all previous results:

○ GCN brought improvement over baseline architecture

○ Stacking GCN layers monotonically increased performance in some setting

○ Best result obtained with GCN on top of RNN encoder
○ Syntactic GCN is the best GCN configuration

SRL NMT Event Detection

Best GCN Configuration LSTM + GCNs (K=1) BiRNN + GCN (2L) BiLSTM + GCNs (K = 2)



GCN Trends from Our Experiments

● Our best non-Transformer result with a single GCN layer without an RNN 
encoder

● Stacking additional GCN layers monotonically decreases performance
○ >1 - hop neighborhood contributes more noise than signal?
○ we showed it’s not important to get a “context vector”



Insights from GAT experiments

● All 3 considered GAT settings performed at most on par with baseline GCN:

○ GCN/GAT roughly equivalent over structured data that’s not edge-labeled

○ 𝔼(#children) < 5, so attention distribution over them is not that useful 

comparing to datasets on which GAT performs state-of-the-art

○ edgewise gating, which depends only on the features of neighbor node and 

syntactic relation, is a more effective moderator of node’s neighborhood



GCN / Transformer Insights

● GCNs largely redundant to the powerful Transformer model

● Multiheadedness is crucial to performance of Transformer

● Transformer, unlike GCN, plummets without injection of sinusoidal positional 

embeddings (drops 13%)



Conclusion

● GCN superior to BiLSTM as sentence encoder

● GCN runner-up to Transformer, and preferable in that:

○ requires order of magnitude fewer parameters

○ performance improves with real syntactic information

○ not crippled by absence of sequential information (i.e. actually relies on 

hierarchical representation of sentence)



Future Directions

● AMR Relation to Dependency Relation aligner to find better GCN config

○ Currently only AMR node to token alignment

● Visualize Transformer attention weights:

○ See if they correspond to dependency tree

○ Supervise Transformer weights with gold dependency tree
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